Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38105981

RESUMO

The human brain expresses thousands of different long noncoding RNAs (lncRNAs), and aberrant expression of specific lncRNAs has been associated with cognitive and psychiatric disorders. While a growing number of lncRNAs are now known to regulate neural cell development and function, relatively few have been shown to underlie animal behavior, particularly with genetic strategies that establish lncRNA function in trans. Pnky is an evolutionarily conserved, neural lncRNA that regulates brain development. Using mouse genetic strategies, we show that Pnky has sex-specific roles in mouse behavior and that this lncRNA underlies specific behavior by functioning in trans. Male Pnky-knockout (KO) mice have deficits in cued fear recall, a type of Pavlovian associative memory. In female Pnky-KO mice, the acoustic startle response (ASR) is increased and accompanied by a decrease in prepulse inhibition (PPI), both of which are behaviors altered in affective disorders. Remarkably, expression of Pnky from a bacterial artificial chromosome (BAC) transgene reverses the ASR phenotype of female Pnky-KO mice, demonstrating that Pnky underlies specific animal behavior by functioning in trans. More broadly, these data provide genetic evidence that a lncRNA gene and its function in trans can play a key role in the behavior of adult mammals, contributing fundamental knowledge to our growing understanding of the association between specific lncRNAs and disorders of cognition and mood.

2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758101

RESUMO

Among the large, diverse set of mammalian long noncoding RNAs (lncRNAs), long noncoding primary microRNAs (lnc-pri-miRNAs) are those that host miRNAs. Whether lnc-pri-miRNA loci have important biological function independent of their cognate miRNAs is poorly understood. From a genome-scale lncRNA screen, lnc-pri-miRNA loci were enriched for function in cell proliferation, and in glioblastoma (i.e., GBM) cells with DGCR8 or DROSHA knockdown, lnc-pri-miRNA screen hits still regulated cell growth. To molecularly dissect the function of a lnc-pri-miRNA locus, we studied LOC646329 (also known as MIR29HG), which hosts the miR-29a/b1 cluster. In GBM cells, LOC646329 knockdown reduced miR-29a/b1 levels, and these cells exhibited decreased growth. However, genetic deletion of the miR-29a/b1 cluster (LOC646329-miR29Δ) did not decrease cell growth, while knockdown of LOC646329-miR29Δ transcripts reduced cell proliferation. The miR-29a/b1-independent activity of LOC646329 corresponded to enhancer-like activation of a neighboring oncogene (MKLN1), regulating cell propagation. The LOC646329 locus interacts with the MKLN1 promoter, and antisense oligonucleotide knockdown of the lncRNA disrupts these interactions and reduces the enhancer-like activity. More broadly, analysis of genome-wide data from multiple human cell types showed that lnc-pri-miRNA loci are significantly enriched for DNA looping interactions with gene promoters as well as genomic and epigenetic characteristics of transcriptional enhancers. Functional studies of additional lnc-pri-miRNA loci demonstrated cognate miRNA-independent enhancer-like activity. Together, these data demonstrate that lnc-pri-miRNA loci can regulate cell biology via both miRNA-dependent and miRNA-independent mechanisms.


Assuntos
Proliferação de Células/genética , Loci Gênicos , RNA Longo não Codificante/metabolismo , Apoptose/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA-Seq
3.
Epigenetics Chromatin ; 13(1): 41, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028366

RESUMO

BACKGROUND: Transcription of genes residing within constitutive heterochromatin is paradoxical to the tenets of epigenetic code. The regulatory mechanisms of Drosophila melanogaster heterochromatic gene transcription remain largely unknown. Emerging evidence suggests that genome organization and transcriptional regulation are inter-linked. However, the pericentromeric genome organization is relatively less studied. Therefore, we sought to characterize the pericentromeric genome organization and understand how this organization along with the pericentromeric factors influences heterochromatic gene expression. RESULTS: Here, we characterized the pericentromeric genome organization in Drosophila melanogaster using 5C sequencing. Heterochromatic topologically associating domains (Het TADs) correlate with distinct epigenomic domains of active and repressed heterochromatic genes at the pericentromeres. These genes are known to depend on the heterochromatic landscape for their expression. However, HP1a or Su(var)3-9 RNAi has minimal effects on heterochromatic gene expression, despite causing significant changes in the global Het TAD organization. Probing further into this observation, we report the role of two other chromatin proteins enriched at the pericentromeres-dMES-4 and dADD1 in regulating the expression of a subset of heterochromatic genes. CONCLUSIONS: Distinct pericentromeric genome organization and chromatin landscapes maintained by the interplay of heterochromatic factors (HP1a, H3K9me3, dMES-4 and dADD1) are sufficient to support heterochromatic gene expression despite the loss of global Het TAD structure. These findings open new avenues for future investigations into the mechanisms of heterochromatic gene expression.


Assuntos
Centrômero/metabolismo , Epigênese Genética , Heterocromatina/metabolismo , Animais , Centrômero/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo
4.
Genome Biol ; 21(1): 83, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234056

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) exhibit highly cell type-specific expression and function, making this class of transcript attractive for targeted cancer therapy. However, the vast majority of lncRNAs have not been tested as potential therapeutic targets, particularly in the context of currently used cancer treatments. Malignant glioma is rapidly fatal, and ionizing radiation is part of the current standard-of-care used to slow tumor growth in both adult and pediatric patients. RESULTS: We use CRISPR interference (CRISPRi) to screen 5689 lncRNA loci in human glioblastoma (GBM) cells, identifying 467 hits that modify cell growth in the presence of clinically relevant doses of fractionated radiation. Thirty-three of these lncRNA hits sensitize cells to radiation, and based on their expression in adult and pediatric gliomas, nine of these hits are prioritized as lncRNA Glioma Radiation Sensitizers (lncGRS). Knockdown of lncGRS-1, a primate-conserved, nuclear-enriched lncRNA, inhibits the growth and proliferation of primary adult and pediatric glioma cells, but not the viability of normal brain cells. Using human brain organoids comprised of mature neural cell types as a three-dimensional tissue substrate to model the invasive growth of glioma, we find that antisense oligonucleotides targeting lncGRS-1 selectively decrease tumor growth and sensitize glioma cells to radiation therapy. CONCLUSIONS: These studies identify lncGRS-1 as a glioma-specific therapeutic target and establish a generalizable approach to rapidly identify novel therapeutic targets in the vast non-coding genome to enhance radiation therapy.


Assuntos
Neoplasias Encefálicas/terapia , Sistemas CRISPR-Cas , Glioblastoma/terapia , RNA Longo não Codificante/antagonistas & inibidores , Adulto , Astrócitos , Encéfalo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Terapia Combinada , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Oligonucleotídeos Antissenso , Organoides , Tolerância a Radiação
5.
FEBS J ; 286(23): 4626-4641, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31644838

RESUMO

Constitutive heterochromatin has been canonically considered as transcriptionally inert chromosomal regions, which silences the repeats and transposable elements (TEs), to preserve genomic integrity. However, several studies from the last few decades show that centromeric and pericentromeric regions also get transcribed and these transcripts are involved in multiple cellular processes. Regulation of such spatially and temporally controlled transcription and their relevance to heterochromatin function have emerged as an active area of research in chromatin biology. Here, we review the myriad of roles of noncoding transcripts from the constitutive heterochromatin in the establishment and maintenance of heterochromatin, kinetochore assembly, germline epigenome maintenance, early development, and diseases. Contrary to general expectations, there are active protein-coding genes in the heterochromatin although the regulatory mechanisms of their expression are largely unknown. We propose plausible hypotheses to explain heterochromatic gene expression using Drosophila melanogaster as a model, and discuss the evolutionary significance of these transcripts in the context of Drosophilid speciation. Such analyses offer insights into the regulatory pathways and functions of heterochromatic transcripts which open new avenues for further investigation.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Animais , Centrômero/genética , Centrômero/metabolismo , Evolução Molecular
6.
Genomics ; 111(2): 177-185, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29432976

RESUMO

Heterochromatin is associated with transcriptional repression. In contrast, several genes in the pericentromeric regions of Drosophila melanogaster are dependent on this heterochromatic environment for their expression. Here we present a comprehensive analysis of the epigenetic landscape of heterochromatic genes across all the developmental stages of Drosophila using the available histone modification and expression data from modENCODE. We find that heterochromatic genes exhibit combinations of active and inactive histone marks that correspond to their level of expression during development. We also show that Nuclear Matrix Associated Regions (MARs) are prominently present in the intergenic regions of heterochromatic genes during embryonic stages suggesting their plausible role in pericentromeric genome organization. Taken together, our meta-analysis of the various genomic datasets suggest that the epigenomic and genomic landscape of the heterochromatic genes are distinct which could be contributing to their unusual regulatory features as opposed to the surrounding heterochromatin, which is repressive in nature.


Assuntos
Drosophila melanogaster/genética , Epigênese Genética , Heterocromatina/genética , Código das Histonas , Animais , DNA Intergênico/genética
7.
Adv Exp Med Biol ; 1008: 155-198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815540

RESUMO

Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.


Assuntos
Epigênese Genética , Predisposição Genética para Doença , Genoma Humano , Característica Quantitativa Herdável , RNA Longo não Codificante , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...